当前位置:首页 > 专题范文 > 党史学习 >

2023年考研数学概率部分全年复习规划

时间:2023-02-06 11:00:07 浏览量:

下面是小编为大家整理的2023年考研数学概率部分全年复习规划,供大家参考。

2023年考研数学概率部分全年复习规划

考研数学概率部分全年的复习规划1

  ▶1.结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论

  知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

  ▶2.借助几何意义寻求证明思路

  一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的.图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

  ▶3.逆推法

  从结论出发寻求证明方法。如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。


考研数学概率部分全年的复习规划扩展阅读


考研数学概率部分全年的复习规划(扩展1)

——考研数学概率部分全年各个阶段规划 (菁选2篇)

考研数学概率部分全年各个阶段规划1

  ▶基础阶段

  这个阶段的复习时间一般为3月到6月。任务:掌握基本概念,基本原理和基本方法。在这个阶段切忌多做题,特别是难题。大家需要做的就是认真复习教材。配合这三个任务,大家需要看的参考书就是浙大版的概率论教材。同时可以辅助一些基础的练习题。总之,希望大家沉下心,不能浮躁,不能好高骛远,目光盯着基础,这样后续的加速度才能越来越快。

  ▶强化阶段

  这个阶段的复习时间一般为7月到8月。任务:熟悉考研常考题型,掌握常用的方法和技巧。大家在前面经过基础阶段的复习后,对基本概念,基本方法,基本原理都有所掌握。那么强化阶段就是对每一章的考点进行总结归纳,形成题型,并且对方法进行扩充。所以,希望大家认真对方法进行总结同时对第一阶段的笔记进行完善。

  ▶真题阶段

  这个阶段的复习时间一般为9月到10月。任务:熟悉真题的考法,完善技巧和方法。

  在强化阶段复习后,大家知识点和方法都比较清楚了。那么在真题阶段,就是让大家知道真题是怎么考查大家的。同时检测一下大家强化的效果。通过真题,大家可以查缺补漏,进一步的完善知识点和方法。

  ▶模拟阶段

  这个阶段的复习时间一般为11月到12月初。经过三个阶段的洗礼,大家知识点和解题能力都比较完善了。那么,在这个阶段,通过模拟题让大家保温。

  ▶巩固阶段

  这个阶段的复习时间一般为12初到考前。这个阶段,大家把以前总结的笔记仔细再看一遍,把错题仔细的做一遍,把真题认真琢磨一遍。相信大家此时一定有不同的收获。然后就可以调整好心态迎接考试了。

  总之:相信大家只要保持好的心态,有良好的学习态度并且按照规划来认真复习,那么成功一定属于大家。祝大家考研顺利,马到成功!

考研数学概率部分全年各个阶段规划2

  1、复习知识体系

  在讲定积分的时候,我又回归到原来的讲法:从知识体系讲起。因为定积分这章非常重要,考试考查的内容多而广。这章包括:定积分的定义,性质:微积分基本定理;反常积分;定积分的应用。这四个部分各有侧重点。其中定积分的定义是重点;要理解微积分基本定理;要掌握定积分在几何和物理上面的应用。至于反常积分大家了解就行了。

  2、深刻回顾知识点

  在掌握了知识体系之后,自然就需要明确具体的重点知识点了。

  首先是定积分的定义及性质。大家需要深刻理解定积分的定义。我觉得同学们不仅要会用自己的话来表述定义,而且要一步一步的写出精髓。比如说从定义中体现的思想:微元法。同学们要理解分割,近似,求和,取极限这四个步骤。同时要知道其几何意义及定义中需要注意的方面。对定积分定义的考察在每年考研中是必考内容。所以希望引起大家的足够重视。至于性质,大家关键也在于理解。特别是区间可加性;比较定理;积分中值定理。对这三个性质大家一定要知道是怎么来的。考研中有关积分的证明题多多少少会用到这三个性质。所以大家只有理解了才懂得在什么时候用。

  然后是微积分基本定理。这个知识点非常重要。因为它定义了一种新的函数:积分上限函数。而且在一定的条件下,它的导数就是f(x)。所以我们扩展了函数类型。那么导数应用中的切线与法线;单调性;极值;凹凸性等应用就可以与积分上限函数联系了。同时提出了牛顿-莱布尼茨公式,使得我们可以用不定积分来计算定积分。希望同学们要掌握牛顿-莱布尼茨公式的证明过程。

  补充说一点:求定积分常用的方法是基本积分公式;换元积分法(凑微分法和换元积分法);分部积分法。其中换元积分法和分部积分法是重点。大家要理解换元积分法的思想。即我们通过复合函数求导公式推出了凑微分法;通过三角代换,根式代换等提出了换元积分法。而我们通过相乘函数的导数公式推出了分部积分法。所以大家只有知道这些方法是怎么来的才能更好的使用这些方法。接着大家要注意变限积分求导了,最好请大家自己证明下。第三个要说的是反常积分。对这一部分,同学们了解基本定义,会用定积分判断是否收敛就够了。

  最后,是定积分的应用。其实就是微元法在几何以及物理上面的应用。同样的,同学们要知道数学一,数学二,数学三的区别。在几何上,数学三只用掌握用定积分求面积和简单几何体的体积。而数学一和数学二还要求掌握用定积分求曲线弧长,旋转曲面面积。在物理应用方面,数学一和数学二主要掌握用定积分求变力沿直线做功,抽水做功,液太静压力和质心问题。但核心是,同学们一定要掌握微元法的思想。

  3、大量做题

  在大家理解了重点知识以及明确了考试重点后就需要做题巩固了。关键是做真题,反复做真题,反复练习。


考研数学概率部分全年的复习规划(扩展2)

——考研数学概率部分全年的规划

考研数学概率部分全年的规划1

  一,调整心态,稳扎稳打

  就老师现在辅导的学生的情况而看,很多学生反映最近似乎很疲惫,心情也很焦虑,感觉越是临近考试越是学不进去,焦虑的原因是每一科目都觉得复习得不好,估计考不上。这一胡思乱想反而使得我们休息的时候休息不好,学习的时候学习效率也很低,脑子很木,想一道题目的时候感觉之前熟练的东西,现在感觉也不会做了。

  这个时候,建议大家适当放松一下,进行一*育锻炼,或是在校园里溜达溜达,晒晒太阳,放松一下心情,甚至和朋友或亲人多沟通沟通,从他们那里得到一些安慰和信心。其实对于每个考生来说,每一个都有一定压力,我们都想打败别人而立于不败之地,所以这个时候,我们更得具有良好的心理素质。

  我们还是按之前的生活习惯进行即可,该休息的时候就休息,该学习的时候就学习。我们休息好了,心态也不错的话,那我们的学习效率也不会差的,这样会有利于我们的备考的。

  二,以真题为主,进行巩固复习

  现在很多同学还在做大量的模拟题,这是错误的复习做法。因为大部分模拟题都偏难。一方面会导致我们会为自己的水*担忧,因为模拟测试的分数偏低;另一方面会导致我们题型的方向和难度把握不好。

  所以在这最后的时间里,建议大家还是以真题为主,我之前做过的真题中,出现的错题或是半路卡壳的"题目自己在认认真真重新做一遍这样会检验我们到底有没有对应的知识点或是方法。若是掌握了那就甚好,若是没掌握了,咱们对应的就找一些专项题目再进行练习一下。

  三,每天坚持动手做题

  数学切忌光看不做,即使在最后的时间里,同学们应该明天也要坚持做题目。一方面是把我们之前学习过的知识点和方法巩固起来,另一方面也是给自己打一针安心计。我们每天练习着,总感觉自己心里很有底,否则的话长时间不看,自己都感觉会忘记一些知识。


考研数学概率部分全年的复习规划(扩展3)

——考研数学概率部分复习的重点

考研数学概率部分复习的重点1

  1、函数、极限与连续。主要考查极限的计算或已知极限确定原式中的常数、讨论函数连续性和判断间断点类型、无穷小阶的比较、讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,关键是要对这些概念有本质的理解,在此基础上找习题强化。

  2、一元函数微分学。主要考查导数与微分的定义、各种函数导数与微分的计算、利用洛比达法则求不定式极限、函数极值、方程的的个数、证明函数不等式、与中值定理相关的证明、最大值、最小值在物理、经济等方面实际应用、用导数研究函数性态和描绘函数图形、求曲线渐近线。求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。

  3、一元函数积分学。主要考查不定积分、定积分及广义积分的计算、变上限积分的求导、极限等、积分中值定理和积分性质的证明、定积分的应用,如计算旋转面面积、旋转体体积、变力作功等计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,*面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。这一部分主要以计算应用题出现,只需多加练习即可。

  4、向量代数和空间解析几何。计算题:求向量的数量积,向量积及混合积;求直线方程,*面方程;判定*面与直线间*行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。这一部分的难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。

  5、多元函数的微分学。主要考查偏导数存在、可微、连续的判断、多元函数和隐函数的一阶、二阶偏导数、多元函数极值或条件极值在与经济上的应用、二元连续函数在有界*面区域上的最大值和最小值。此外,数学一还要求会计算方向导数、梯度、曲线的切线与法*面、曲面的切*面与法线判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的`切*面和法线,求空间曲线的切线与法*面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界*面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,在复习时要引起注意,可以找一些题目做做,找找这类题目的感觉。

  6、多元函数的积分学。包括二重积分在各种坐标下的计算,累次积分交换次序。数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。二重、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线积分、曲面积分计算;第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;第二型(对坐标)曲面积分的计算,高斯公式及其应用;梯度、散度、旋度的综合计算;重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。

  7、微分方程。主要考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。差分方程的基本概念与一介常系数线形方程求解方法。求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,求线性常系数齐次和非齐次方程的特解或通解;根据实际问题或给定的条件建立微分方程并求解;综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。


考研数学概率部分全年的复习规划(扩展4)

——考研数学一二三区别及全年复习规划 (菁选2篇)

考研数学一二三区别及全年复习规划1

  【数学满分及考试时间】

  试卷满分为150分,一般在第二天的上午8:30-11:30,考试时间为180分钟

  数一、数二、数三试卷题型结构均为:

  单选题8小题,每题4分,共32分,

  填空题6小题,每题4分,共24分,

  解答题(包括证明题)9小题,共94分。

  【数一、数二、数三的区别】

  1.数一题型

  高等数学56%

  线性代数22%

  概率论与数理统计22%

  2.数二题型

  高等数学78%

  线性代数22%

  3.数三题型

  微积分56%

  线性代数22%

  概率论与数理统计22%

  数一、数二、数三最大的区别是数学二缺少了概率论与数理统计,而数一和数三不论考试科目还是分值比例都是相同的。

  【考研数学全年学习规划】

  一、学习阶梯划分

  1.一阶基础全面复习(3月-6月)

  2.二阶强化熟悉题型(7月-10月)

  3.三阶模考查缺补漏(11月-12月15号)

  4.四阶点睛保持状态(12月16日-考试前)

  二、参考书目:

  数学考试大纲

  《高等数学》同济版:讲解比较细致,例题难度适中,涉及内容广泛,是现在高校中采用比较广泛的教材,配套的辅导教材也很多。

  《线性代数》同济版:轻薄短小,简明易懂,适合基础不好的学生。《线性代数》清华版:适合基础比较好的学生

  《概率论与数理统计初步》浙大版:基本的题型课后习题都有覆盖。

  历年真题。这些试题对于了解考研题型,体会出题思路,把握命题重点,强化答题技巧和训练答题规范有重大意义。考研真题不但要从每道题上符合严格的出题规范,还要从整体上符合预期的难度和区分度,因此整套的真题更能反映命题特点。

  三、复习规划

  1.一阶基础,全面复习(3月-6月)

  学习目标:根据去年考研数学大纲要求结合教材对应章节系统复习,打好基础,特别是对大纲中要求的三基--基本概念、基本理论、基本方法要系统理解和掌握。完成从大学学习到考研备战的基础准备。

  复习建议:这一阶段主要的焦点要集中精力把教材好好地梳理,要至始至终不留死角和空白,按大纲要求结合教材对应章节全面复习,另外按章节顺序完成教材及相应的配套练习题,通过练习检验你是否真正地把教材的内容掌握了。由于教材的编写是环环相扣,易难递进的,所以建议每天学习新内容前要复习前面的内容,按照规律来复习,经过必要的重复会起到事半功倍的效果。也就是重视基础,长期积累;基础阶段重视纵向学习,夯实知识点。

  2.二阶强化熟悉题型(7月-10月)

  本阶段是考研复习的重点,对成败起决定性作用。除了知识点的强化,要注意通过练习提高计算能力。大体可以分两轮学习。

  第一轮暑期强化:7--8月

  学习目标:熟悉考研题型,加强知识点的前后联系,分清重难点,让复习周期尽量缩短,把握整体的知识体系,熟练掌握定理公式和解题技巧。

  复习建议:强化基本知识,进一步扫清知识体系中的"盲点";归纳考研数学常见的题型,练习经典的例题,总结解题思路和方法,做到举一反三。在学习过程中对重点、难点一定做笔记,便于下一轮复习。

  第二轮秋季强化:9-10月

  学习目标:通过真题讲解和训练,进一步提高解题能力和技巧,达到实际考试的要求

  复习建议:根据近15年真题进行分类总结、专项复习,对考试重点题型和自己薄弱的内容进行攻坚复习,达到全面掌握,不留空白和软肋,让训练达到或稍微超过真题难度。

  3.三阶模考查缺补漏(11月-12月15号)

  学习目标:这一阶段的目标是保住自己在前两个阶段的成果。1、通过对以往学习笔记的复习全面掌握考试要求;2、进行高强度(高于考试强度)的冲刺题训练,进入考试状态,达到考试要求。

  复习建议:

  1通过做题进行总结和梳理(做题训练应当重点放在按考试要求的套题);

  2复习教材和笔记进行必要的记忆,对基本概念、基本公式、基本定理进行记忆,尤其是*时不常用的、记忆模糊的公式,经常出错的要重点记忆;

  3开始进行模拟试题或者真题的实战演练,在这个过程中,注意答卷时间的分配,重视考场心态的调整。

  4.第四阶点睛保持状态(12月15日-考试前)

  学习目标:考前重点题型,应考技巧训练,保持状态

  复习建议:查漏补缺,易错点归纳并解决。多看之前做过的真题,并将自己整理的笔记或总结的重点习题再仔细看看,更佳提高针对性,加深记忆。在此基础上,按照考试时间去做一些强度不太大的模拟题或是真题,保持手感,以免到了考场思路断电,手生。同时还要调整心态,积极备考,以良好的状态到考场。

  【五点注意问题】

  1.强调学习而不是复习。对于大部分同学而言,由于高等数学学习的时间比较早,而且原来学习所针对的.难度并不是很大,加上遗忘,现在数学知识恐怕已经所剩无几了。所以,这一遍强调学习,要拿出重新学习的劲头亲自动手去做,去思考。

  2.复习顺序的选择问题。数学这门考试科目包含了三门课程,可能会学完概率忘了微积分,学完了线代又忘了概率,所以要重复复习,要逐渐缩短这种循环周期。我们并不主张三门课齐头并进,毕竟三门课之间还是有所区别的,要学一门就先学精了再继续推进,做成"夹生饭"会让你有种骑虎难下的感觉,到时你反而会耗费更多的时间去收拾烂摊子。至于三门课的顺序,大家可以根据自己的情况选择,没有硬性的规定。

  3.要注意细致深入。学习的过程中一定要力求全部理解和掌握知识点,考试大纲因为不是按照课本的章节次序编写的,所以可以先学习一段时间之后再比照大纲,对知识点的复习情况进行评估。多动笔,动手计算,把每一道大题的结果都算出来,不要觉得会思路就不用做了,要做到"做得对"。盲目自信眼高手低,会导致计算能力差,做题慢,考场上一旦有题目卡住就会慌乱。

  4.强调积极主动地亲自参与,并整理出笔记。注意一定要在学习过程中写出自己的感受,可以在书上以题注的形式或者就是做笔记,尽量深挖例题内涵,这一点很重要,并且要贯彻到第三轮的复习,这样到了最后一轮,我们有了自己整理的笔记,复习起来就会轻松很多。有同学说学习线性代数最好的办法就是亲自推导,很有道理,事实上如果我们学习什么知识都采取这种态度的话,那肯定都会学得非常好。

  5.建议学习时间。每年硕士研究生入学数学考试的时间一般都安排在上午,故建议考生们将数学的复习时间安排在每天早上9:00-12:00(可根据自身情况适当调整,但此时效果最好)。每天至少应安排花2.5-3个小时来复习数学,其中基础阶段要用1.5-2个小时左右的时间理解掌握概念、定义等,用1个小时左右来做习题巩固。对于数学基础较差的同学建议每天再加1个小时的复习时间用来做习题并总结。

考研数学一二三区别及全年复习规划2

  一、鲶鱼效应:一个竞争的复习环境

  很久以前,挪威人从深海捕捞的沙丁鱼,总是还没到达海岸都已经口吐白沫。然而,有一条渔船却总能带着活鱼上岸。这是为什么呢?后来,人们才发现原来那条渔船在沙丁鱼槽里放进了鲶鱼。鲶鱼是沙丁鱼的天敌,鲶鱼不断地追逐沙丁鱼,沙丁鱼拼命游动,激发了其内部的活力,从而活了下来。这就是鲶鱼效应。鲶鱼效应告诉我们:竞争可以激发人们内在的活力。

  对于考研(微博)的人来说,一个人闷头复习,经常会出现疲倦、无聊等反应。而这对于复习来说,都是致命的大敌,将会严重影响复习的效率。那么如果刺激自己,激活自己的内在活力呢?让我们在复习当中引进一条鲶鱼吧。

  我们复习时,可以找一个复习伙伴。当然,这个伙伴最好是学习比较努力、学习成绩和自己差不多或者比自己略好的人。有个这样一个复习伙伴,就可以形成互相竞争、追赶帮带的形势,对自己学习效率的提高无疑是有一定帮助的。如果找不到这样的复习伙伴呢?也不要紧。有一位两个月考上研究生的女生说,她在复习的两个月内,作息制度完全按照邻居一位要参加中考的中学生的来。大家都知道,我们在中考或者高考(微博)的时候,那种作息时间是相当规律并且严格的,并且复习的努力程度也是大学生所远远不能比的。找到了这样一个鲶鱼,对自己复习的促进效果是显而易见的。

  二、酒与污水定律:一个干净的复习环境

  酒与污水定律是指把一匙酒倒进一桶污水,得到的是一桶污水;如果把一匙污水倒进一桶酒,得到的还是一桶污水。在任何组织里,几乎都存在几个难弄的人物,他们就像果箱里的烂苹果,如果不及时处理,它会迅速传染,把果箱里其他苹果也弄烂。

  这个原理给我们带来的启示是:在我们进行考研复习的过程中,一定要远离那些污水。

  污水都包括哪些方面的内容呢?有些不考研的同学,到了大学的最后阶段,就已经进入了最后的疯狂放松阶段,如果整天和这些人在一起,就算没有达到他们疯狂的程度,也可能严重影响考研的心境,打破既定的学习计划。还有些人,为了弥补大学期间没有谈一次恋的遗憾,在最后阶段开始谈恋爱,恋人最终会成为污水,影响自己的复习。所以准备考研的人,千万不能在这最后阶段掉入污水。当然,能成为污水的东西还有很多,我们一定要远离这些能干扰到自己的因素。

  三、奥卡姆剃刀定律:扔掉多余的参考书

  12世纪,英国奥卡姆的威廉主张唯名论,只承认确实存在的东西,认为那些空洞无物的普遍性概念都是无用的累赘,应当被无情地剃除。他主张如无必要,勿增实体。这就是常说的奥卡姆剃刀。奥卡姆剃刀现在具有广泛、丰富、深刻的意义,如在企业管理中演化为简单与复杂定律:把事情变复杂很简单,把事情变简单很复杂。这个定律要求,我们在处理事情时,要把握事情的主要实质,把握主流,解决最根本的问题,尤其要顺应自然,不要把事情人为地复杂化,这样才能把事情处理好。

  考研复习时,不少人都会买很多本参考书,买无数套的模拟题。这不仅不会帮助你提高复习效果,最终会使你陷入忙乱。参考书过多,容易让人有压迫感,什么时候才能看完呢?什么时候才能做完呢?结果要么是看不完,要么是匆匆看完,但是没有一本参考书给弄透,其实效果很差。不如根据自己的特点,选择少量合适的参考书,然后将其吃透。比如自己基础比较薄弱的科目,就适合从课本入手,那么这个时候就需要买一本同步练习之类的书,以便及时巩固自己刚刚复习过的课本知识。如果是自己基础比较好的科目,就适合从模拟题入手,待遇到不会的知识,再回到课本上进行复习。模拟题也不用买得太多,能达到查漏补缺的目的就差不多了。无论是基础薄弱的科目还是基础比较好的科目,基础知识复习得很到位的情况下,其实最后都必须落脚到做真题,5~10年的真题都可以做一做,以便使自己及时进入考试状态和做最后的检验和查漏补缺。


考研数学概率部分全年的复习规划(扩展5)

——考研数学概率论基础复习技巧 (菁选2篇)

考研数学概率论基础复习技巧1

  概念不清,弄不清事件之间的关系和事件的结构;

  分析有误,概率模型搞错;

  不能正确地选择概率公式去证明和计算;

  不能熟练地应用有关的定义、公式和性质进行综合分析、运算和证明。

  我们应该有针对性地去了解问题症结,各个击破。在考试的时候很多同学都有看不懂题目的困惑,比较着急。其实,看不懂题目一方面是因为做的题目比较少,另一个很重要的方面是对基本概念、基本性质理解的不够深刻,没有理解到这些概念的精髓和用途。

  针对前者,老师建议考生一方面多做些题目,尤其是文字叙述的题目,逐渐提高自己分析问题的能力;另一方面花点时间准确理解概率论与数理统计中的基本概念,结合一些实际问题理解概念和公式,也可以通过做一些文字叙述题巩固概念和公式。只要只要公式理解的准确到位,并且多做些相关题目,考卷中碰到类似题目时就一定能够轻易读懂和正确解答了。

  针对后者,我们在这里所要重点推荐的是结合实际例子和模型记忆的方式。举这样一个例子,比如二向概率公式,你可以用这样一个模型记忆,把一枚硬币重复抛N次,正面朝上的概率是多少呢?通过实例型来以点代面的记忆,在理解基础上的记忆,内容才不会不轻易忘记,同时,又能够作为模式正确运用到题目的解决中。

  概率论与数理统计的考分分布不仅均值偏低,而且“方差”也大,中等及中上等考生的微积分和线性代数的成绩相差并不是很大,他们之间在数学成绩上的差距主要来源于概率论与数理统计部分,一些发挥不稳定的考生甚至因此而失去被录取的机会。由此分析得出,对多数考生来说,概率论与数理统计部分是考生在数学统考中的一个弱项,是关系考生在选拔性考试中竞争力强弱的关键一环,对中等水*的考生来说,尤为如此。

  而基础复习,那就是最初应该掌握的东西。因此在第一阶段复习这个打基础的时候,我们认为考生在数学科目的复习安排上,要先从最薄弱的一环开始,也就是说,在整个数学课程复习之初,要按照最新考研大纲规定的内容,先将概率论与数理统计再学习一遍,一节节地复习,一个概念一个概念地领会,一题一题地做,以达到正确理解和掌握基本概念、基本理论和基本方法。这一阶段复习做题时,不要过多地去追求难题、技巧,要重视对教科书中一般习题的练习,配合各章节内容脚踏实地、全面仔细地复习做基础题。只要是考纲上有的内容,就要不遗漏地弄会、搞透总结一般题型的解题方法与思路。在复习初期这个阶段中,虽然涉及综合性提高性题型不多,但基础打得好将为下阶段全面综合复习创造一个有利的前提,更何况,很多综合性、灵活性强的考题,其关键之处也在于考生是否能够适当运用有关的最基本概念、理论和方法。

  再来就是题型分布的问题。概率论与数理统计这部分内容从历年试题看考查单一知识点比较少,即使是填空题和选择题也是如此。大多数试题是考查考生的理解能力和综合应用能力,考生要能够灵活地运用所学的知识,建立起正确的概率模型,综合运用极限、连续函数、导数、极值、积分、广义积分以及级数等知识去解决问题。

考研数学概率论基础复习技巧2

  1.确立目标。高等数学部分的主体由函数、极限和连续、一元函数的微积分、多元函数的微积分、微分方程和级数五大模块构成(数学一、二、三在各个模块的要求有一定差异),从历年的试题中,高等数学的考查重点和难点更多的集中在前两个模块,他们既是考试的重点,也是学好后面模块的基础,因此,建议大家在整个寒假期间把复习高数的重点集中在这两个模块,根据个人实际情况,一步步扎实的复习,切不可囫囵吞枣,盲目图快。

  2.资料选择。这一阶段复习建议以教材为主,数学一、二的考生建议使用同济版高等数学、数学三同学推荐赵树嫄的《微积分》(第3版),中国人民大学出版社。当教材习题对你而言没有太大困难的时候,可以参考一本基础阶段的考研辅导讲义,比较推荐的是国家行政学院出版社出版的,李永乐的.复习全书,或北京理工大学出版社出版,张宇、蔡燧林主编的辅导讲义。

  3.复习任务。有了目标和资料,接下来就是如何复习的问题。我们建议大家第一步先细看教材,以及结合上课内容,逐一突破每个知识点,然后通过习题去巩固检测,需要注意的是,由于考试是以题目是否作对为给分依据的,建议大家从现在开始就养成将每道题做到底的习惯,切忌眼高手低,大眼看去感觉会做就不具体算出来。教材习题解决后,可结合辅导书,适当增加难度。当遇到不懂得知识点,要做上记号,及时解决,我们为大家开辟了免费答疑的频道,欢迎大家使用。

  最后需要强调的一点是,考研高数中蕴含着三大运算:求极限、求导数和求不定积分,它们是贯穿于整个高等数学的灵魂,因此建议大家在寒假集中强化训练这三种运算,尤其是不定积分和求极限,它们的难度比较大。对这三种运算的熟练程度直接决定了你的考研高数部分的得分。


考研数学概率部分全年的复习规划(扩展6)

——考研数学概率部分考察有哪些特点 (菁选2篇)

考研数学概率部分考察有哪些特点1

  1、与高等数学联系紧密

  概率论与数理统计这门学科与高等数学的联系是非常紧密的,因为对于我们在求概率、期望、方差等变量时都需要用到高数中的相关知识,包括极限、导数、定积分与二重积分等,所以大家要想学好概率论这门学科,就要先学好高数的相关知识。但是大家也不用担心,因为这部分用到的高数知识都是比较简单的,大家只要掌握了这部分的基本知识以及基本求导数、求积分的方法就可以了。

  2、偏计算,公式繁多

  概率论这门学科在考研数学中主要考查大家的就是计算,大家只要会算各种情况下概率、期望、方差等就可以了。但是对于概率论这个学科而言,如果大家要计算,就需要去记住很多公式,只有把相关的公式全记住了在考试中对于不同的情况才能选取合适的公式。

  3、与实际联系紧密

  概率论这个学科相对于高等数学和线性代数这两个学科而言,它与我们的生活联系是比较紧密的,比如说抽签或者买票中奖的概率体现出的抽签原理等。因为这个特点,概率论在考试中一般都是与实际问题结合起来考查大家,这时就需要大家能够先抽象出概率学表达式,然后再代入合适的公式去求解。

考研数学概率部分考察有哪些特点2

  ▶微积分

  极限函数和连续性这一部分内容来讲,高频的考题是什么呢?那就是未定式的极限。我们说,对于像幂指函数这样的未定式的极限,它是重点考查的内容。它就是高频的考点。

  还会有其他的求极限的方法,比如说利用定积分的定义,像中值定理来进行极限的计算,这样的内容虽然它未必是高频的考题,但是我们也一定要进行重视。也就是说它会偶尔进行出现。

  像一元函数的微分学,求导运算它是微积分的基础,也是考查的重点内容。在各类函数的求导问题当中,高频的考点比如说像隐函数求导,像数学一和数学二由参数方程所确定的函数的导数,像分段函数的可导性,它的考查这些都是高频的考题。

  像幂指函数的求导、复合函数的求导,它也会偶尔进行考查。

  再比如一元函数微分学的应用,每年是必考的内容,像研究函数的性态,比如说函数单调性、极值、最值和凹凸性,相比而言像极值和最值的问题,就是绝对高频的考点,几乎年年都要进行考查。

  但是像对于凹凸性这样的问题,我们也不能忽视。也就是说,我要掌握了描述函数图形的各类的这样的步骤和方法,对于这类的问题我们就可以迎刃而解。像这些问题的延伸问题,比如说利用单调性、凹凸性、极值和最值来证明不等式,我们就要掌握这类问题的常规的解题模式和方法。向来研究方程根的个数问题,每隔几年也要进行考查。

  像一元函数积分学,这里面的高频内容就是积分上限函数。伴随这积分上限函数,它就会一定有求导的过程。这样的话,对于积分上限函数,它就是高频的考题。我们就要重点掌握它的求导运算。但是对于积分的一般的运算,我们也不能忽视,所以高频和低频是相对而言的。

  像多元函数微分学,它的应用当中,极值和条件极值就是重点考查的内容。而对于偏导运算,几乎每年要进行考查。对于数学一而言,方向导数和梯度,它就会偶尔进行考查。

  像多元函数的积分学,像二次积分,几乎每年都会出解答题。对于曲线和曲面积分,一般也是以解答题的形式出现,这样对于数学已的考生就要重点掌握。

  ▶线性代数

  我们应该重点掌握,像矩阵、向量和向量组,还有线性代数方程组,它们这些问题之间的相互关系,和之间的相互研究,只要我们把这个问题研究清楚了,无论题型怎么变换,无论题怎么样的角度来变换,我们都能够很好的进行解答。

  ▶概率论和数理统计

  哪些是高频的考点,在考试大纲中也明确的.为大家进行了分析。比如说实际上概率的核心问题就是三个问题:一,事件的概率怎么样来进行计算;二,就是随机变量它的分布如何来求取;三,就是随机变量的数字特征。无论怎么样来进行命题,这三个校对都是重点考查的内容。所以根据考试大纲解析,我们能够明确这些高频的考点,我们就掌握了80%的分量。


考研数学概率部分全年的复习规划(扩展7)

——考研数学概率的重点复习指导 (菁选2篇)

考研数学概率的重点复习指导1

  一、仔细分析考试大纲,抓住重点

  考试大纲是最重要的备考资料,虽然20xx年的考试大纲还没有出,不过从历年的数学大纲来看,每年基本上没有变化,所以大家可以先参考2014年考研数学大纲,将大纲中要求的内容仔细梳理一下,在复习过程中一定要明确重点,对于不太重要的内容,如古典概型,只要求掌握一些简单的概率计算即可,不需要在复杂的题目上投入太多精力。而对于概率的重点考查对象一定要重视,例如,随机变量函数的分布基本上每年都会以解答题的形式考查,其中离散型随机变量函数的分布是比较简单的,连续型随机变量函数的分布是考试频率最高的,也是较难的一类题目,在利用分布函数法求概率密度函数过程中,如何正确寻找分段点以及确定积分上下限是正确解决这类问题的关键,所以*时复习要加强这类题型的训练,一个离散型一个连续型随机变量函数的分布,求最大值、最小值函数的分布考频也是比较高的。另外,二维连续型随机变量的边缘分布、条件分布也是考试的重点,大家在复习过程中一定要深刻理解他们的定义和计算方法。随机变量的分布还经常与数字特征结合出题,所以数字特征也是概率的一大重点,但往往考生对于这部分知识掌握的不好,失分现象严重,所以要求大家复习时要灵活应用数字特征相应的计算公式及性质。数理统计中,参数估计的矩估计法和最大似然估计法及验证估计量的无偏性也是解答题中经常考查的知识点,大家复习过程中要特别重视。

  二、加强对基本概念、基本性质的理解

  从历年试题看,概率论与数理统计这部分内容主要考查考生对基本概念、原理的深入理解以及分析解

  决问题的能力,需要考生能够做到灵活地运用所学的知识,建立起正确的概率模型去解决概率问题。所以

  大家在复习过程中要准确理解概率论与数理统计中的基本概念,基本性质,为了深刻记忆,我们可以结合

  一些实际问题去理解,只要概念和公式理解准确到位,并且多做些相关题目,考试时碰到类似题目就一定能够轻松正确解答。

  基础知识的复习主要是在基础阶段进行,也就是今年暑期之前,要特别指出的是在基础阶段的复习中,不要轻视对教科书中一般习题的练习,一定要配合各章节内容做一定数量的习题,总结一般题型的解题方法与思路。在此过程中,不要过多地去追求难题、技巧,要脚踏实地、全面仔细地复习,凡是考纲上有的内容,就不要遗漏。这个阶段虽然涉及综合性、提高性题型不多,但基础打得好将为下阶段全面综合复习创造一个有利前提,而且,试卷中多数综合性、灵活性强的考题,其关键之处也在于考生是否能够适当运用有关的基本概念、理论和方法。

  三、重视真题的训练

  真题是最具有代表性的资料,因为概率统计考试内容和技巧比较单一,变化相对较少,所以在考研真题题型中的重复率可以达到90%,因此我们要加强对历年真题的重视,尤其是近十年的真题,总体来讲,做真题可以分两步。第一步,做套题,这样一是可以检验复习的水*,发现概念和内容上不熟悉的地方,另外为真正的考试积累经验。第二步,按照章节分类解析,在第一步基础上,有些题目有可能会做错,把它们记下来,在进行各个章节专题训练时,,强化知识和方法。最后,把近十年的真题再研究一下,弄清楚常考的是哪些内容,把考试题型彻底熟悉,并且要会正确解答。一定不要过多的花时间去理解其它无关或者非重点内容。

  四、回顾知识点,进行适当的模拟训练

  最后冲刺阶段,需要回归教材,把课本再认真看一遍,查遗补漏,将知识条理化、系统化。另外,可以做几套模拟试卷。从知识点到做题思路,解题技巧,答题顺序等各个方面进行强化训练,千万不能做太难太偏的模拟题,不然会做无用功,甚至对考试失去信心,也起不到锻炼的价值。考前两天将重要公式回顾一遍。通过完整的复习,形成最终的竞争力,考出最好的成绩

考研数学概率的重点复习指导2

  一、注意基本概念、基本性质及基本方法的复习

  很多考生在复习过程中经常忽略基础的重要性,总是针对一些难题、偏题、怪题进行训练,但是我们从历年真题上就可以看出,对基本概念、基本性质和基本方法的考查才是考研数学的重点,真题中所谓的难题也都是在基础概念、基本性质及基本方法上进行加深的,很多考生由于对这些基础内容掌握不够牢固,理解不够透彻,导致许多不应该失分的现象,这一点在线性代数这个模块上体现的更加明显。所以,考生在复习中一定要重视基本概念、基本性质和基本方法的理解与掌握,多做一些基本题来巩固基础知识。

  比如,线性代数中经常涉及到的基本概念,余子式,代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性表示,线性相关与线性无关,极大线性无关组,基础解系与通解,特征值与特征向量,矩阵相似与相似对角化,二次型的标准形与规范形,正定矩阵与正定二次型,合同变换与合同矩阵等等,这些概念必须理解清楚。

  对于线性代数中的基本运算,行列式的计算(数值型、抽象型),求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关性的判定,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量,判断矩阵是否可以相似对角化,求相似对角矩阵,用正交变换法化实对称矩阵为对角矩阵,用正交变换化二次型为标准形等等。一定要注意总结这些基本运算的运算方法。例如,复习行列式的计算时,就要将各种类型的行列式计算方法掌握清楚,如,行(列)和相等型、爪型、三对角线型,范德蒙行列式等等。

  二、注重知识点的衔接与转换

  线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,正是因为各知识点之间有着千丝万缕的联系,线性代数题的综合性与灵活性比较大,解题方法灵活多变,因此,大家复习时一定要注重知识点的"衔接与转换,不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。比如,在复习过程中,我们可以以方程组解的讨论为复习主线,弄清楚它与行列式、向量、矩阵、特征值与特征向量之间有什么样的关系,掌握他们之间的联系与区别,对线性代数整个知识框架的理解有很大帮助,同时在解题思路和方法上也会有很大的帮助。

  三、多做练习,注意总结

  从近几年的研究生入学考试试题看,加强了对考生分析问题和解决问题能力的考核。在线性代数的两个大题中,基本上都是多个知识点的综合。从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的考核。因此,在打好基础的同时,通过做一些综合性较强的习题,边做边总结,以加深对概念、性质内涵的理解和应用方法的掌握。在做题过程中,大家一定要注意以下两点:一是多动笔,数学复习最忌讳光看不练,尤其是线性代数,它的计算量比较大,很多同学考试时因为计算性的错误丢分是很常见的,所以多做练习对于巩固知识点、提高计算能力都有很大帮助;二是多总结,*时在做题的过程中需要注意总结一些解题思路,哪种类型的题需要用什么思路,解题过程中容易出错的地方在哪里,这样经过一段时间训练后,在正式考试中看到相似题型后可以迅速确定用哪种解法,大大提高了解题的速度和效率。另外,一个试题可能有多种解法,我们应该力求寻找运算路径短、运算步骤少、运算时间省的解法,以求在考试中争取时间,通过自己的归纳、总结、加深对数学思想方法的理解,从而达到简化运算、提高速度的目的。


考研数学概率部分全年的复习规划(扩展8)

——考研数学备考概率的复习建议

考研数学备考概率的复习建议1

  1.初期复习目标:明确考试项

  根据工学、经济学、管理学各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种,其中针对工学门类的为数学(一)、数学(二),针对经济学和管理学门类的为数学(三),具体的数学招生专业可详见招生简章。考试科目不同,对考生的能力要求自然也就不同。所以,要根据自己的目标专业,相应的决定自己是考数学几。

  从近十年考研数学真题来看,试卷中80%的题目都是基础题目,真正需要冥思苦想的偏题、难题只是少数。这就要求同学们结合考研辅导书和大纲,先吃透基本概念、基本方法和基本定理,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。

  2.备考教材:真正掌握知识是关键

  在具体复习中,考生需要做得是准备一本数学考试大纲及教科书。关于数学考试大纲,近年来一直保持一贯的稳定性,所以考生可以现在先对照13年的考试大纲进行 学习。仔细的看每部分的考试内容,掌握考试范围。对于教材的选择,基础阶段最好的教材就是大学用的教科书,一般选用如下几本:同济大学的《高等数学》及《线性代数》,浙江大学的《概率论与数理统计》。如果你大学用的教材不是这三本书,那直接用大学的教科书也是可以的,因为有的同学可能会在自己的书上记一些随堂笔记,或者做出一些重点的标记,突然跟换教材反而会对学习产生一定的影响。也有的考生会问,不同的教材会不会对学习有影响呢?不会有太大的影响,不同版本的教材讲述的知识,差别是不会太大的,即使会有个别的知识没有被讲到,也完全可以通过后边的强化阶段得以补充,所以对于这点考生大可不必担心,不管用什么样的教材,真正掌握知识是关键。

  3.复习顺序:切忌各科同时推进

  建议2014届考生,高数、线性代数、概率与数理统计最好不要放在一起复习,3门课中,高等数学最重要也是基础,而线性代数、概 率中的知识点都可以和高数联系起来出综合题,所以先复习高数,然后复习线性代数,最后再复习概率论与数理统计,效果会比较好。

  4. 理论知识:弄清楚相关理论间的有机联系

  数学基础阶段的复习主要依据考试大纲(现阶段2014年新大纲发布前可先依据2013年考研数学大纲),清楚哪些是重要的考点,哪些是不考的内容,熟练掌握基本概念、定理、公式及常用结论等内容,如看了课本中关于导数定义的介绍,考生就需要很清楚的知道导数引入的背景,它的物理意义、几何意义及导数定义这个式子本质上告诉我们的意思。对于理论性的内容,定理、性质、推论,我们要弄清楚这些定理、性质的条件比如说是充分必要的还是充分非必要的,尽可能弄清楚相关理论间的有机联系。运算方面包括求极限、导数、不定积分、定积分、二重积分、偏导数等等,这个阶段要求大家对一些基本的算法达到熟练的程度。

  5.复习方法:有思想亦有总结

  数学就是一种思考的过程。没有思考,一味地看,是无用功。所以提醒考生,在学习过程中,要有思考亦有总结。做完一道题目,把解题思路进行总结,以后遇到相同类型题目就知道从何处入手了。每道题目所用到的解题方法、技巧不同,把这些方法、技巧整理到一起,便于后期的复习。

推荐访问:概率 复习 考研数学 考研数学概率部分全年复习规划 考研数学概率部分全年的复习规划1 考研数学概率论内容 考研数一概率论重点 概率论考研真题汇总