初二数学分解因式的方法知识点1 注意四原则 1.分解要彻底(是否有公因式,是否可用公式) 2.最后结果只有小括号 3.最后结果中多项式首项系数为正(例如:-3x^2+x=x(-3x+1))下面是小编为大家整理的2023年初二数学分解因式方法知识点3篇,供大家参考。
初二数学分解因式的方法知识点1
注意四原则
1.分解要彻底(是否有公因式,是否可用公式)
2.最后结果只有小括号
3.最后结果中多项式首项系数为正(例如:-3x^2+x=x(-3x+1))
4.最后结果每一项都为最简因式
归纳方法:
1.提公因式法。
2.公式法。
3.分组分解法。
4.凑数法。[x^2+(a+b)x+ab=(x+a)(x+b)]
5.组合分解法。
6.十字相乘法。
7.双十字相乘法。
8.配方法。
9.拆项补项法。
10.换元法。
11.长除法。
12.求根法。
13.图象法。
14.主元法。
15.待定系数法。
16.特殊值法。
17.因式定理法。
我们在竞赛上,又有待定系数法,双十字相乘法,对称多项式,短除法,除法等。
初二数学分解因式的方法知识点2
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。
因式分解
因式分解定义:
把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:
①结果必须是整式;②结果必须是积的形式;③结果是等式;④因式分解与整式乘法的关系:m(a+b+c)
公因式:
一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:
①系数是整数时取各项最大公约数;②相同字母取最低次幂;③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式;②确定商式;③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。
初二数学分解因式的方法知识点3
1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”。
3.公因式的确定:系数的最大公约数·相同因式的最低次幂。
注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.
4.因式分解的公式:
(1)*方差公式:a2-b2=(a+b)(a-b);
(2)完全*方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.
5.因式分解的注意事项:
(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;
(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;
(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;
(4)因式分解的最后结果要求每一个因式的首项符号为正;
(5)因式分解的最后结果要求加以整理;
(6)因式分解的最后结果要求相同因式写成乘方的形式.
推荐访问:因式 知识点 分解 初二数学分解因式方法知识点3篇 初二数学分解因式的方法知识点1 初二数学因式分解有几种方法 初二数学因式分解技巧及答案 初一数学分解因式方法