正向思考的力量,胜过一个负面思想的力量数百倍,那会降低我们某种程度的忧虑。而忧愁像婴儿一样,会慢慢被养大的。记住:别带着忧愁入睡,想想明早天边的彩虹吧。高一频道为你整理了《高一数下面是小编为大家整理的高一数学必修二作业本答案(完整),供大家参考。
【导语】正向思考的力量,胜过一个负面思想的力量数百倍,那会降低我们某种程度的忧虑。而忧愁像婴儿一样,会慢慢被养大的。记住:别带着忧愁入睡,想想明早天边的彩虹吧。高一频道为你整理了《高一数学必修二作业本答案》,希望可以帮到你!
【一】
第Ⅰ卷选择题共60分
一、选择题本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
1.已知集合A=0,1,2,3,4,5,B=1,3,6,9,C=3,7,8,则A∩B∪C等于
A.0,1,2,6,8B.3,7,8
C.1,3,7,8D.1,3,6,7,8
[答案]C
[解析]A∩B=1,3,A∩B∪C=1,3,7,8,故选C.
2.09•陕西文定义在R上的偶函数fx满足:对任意的x1,x2∈[0,+∞x1≠x2,有fx2-fx1x2-x1<0,则
A.f3 C.f-2 [答案]A [解析]若x2-x1>0,则fx2-fx1<0, 即fx2 ∴fx在[0,+∞上是减函数, ∵3>2>1,∴f3 又fx是偶函数,∴f-2=f2, ∴f3 3.已知fx,gx对应值如表. x01-1 fx10-1 x01-1 gx-101 则fg1的值为 A.-1B.0 C.1D.不存在 [答案]C [解析]∵g1=0,f0=1,∴fg1=1. 4.已知函数fx+1=3x+2,则fx的解析式是 A.3x+2B.3x+1 C.3x-1D.3x+4 [答案]C [解析]设x+1=t,则x=t-1, ∴ft=3t-1+2=3t-1,∴fx=3x-1. 5.已知fx=2x-1x≥2-x2+3xx<2,则f-1+f4的值为 A.-7B.3 C.-8D.4 [答案]B [解析]f4=2×4-1=7,f-1=--12+3×-1=-4,∴f4+f-1=3,故选B. 6.fx=-x2+mx在-∞,1]上是增函数,则m的取值范围是 A.2B.-∞,2] C.[2,+∞D.-∞,1] [答案]C [解析]fx=-x-m22+m24的增区间为-∞,m2],由条件知m2≥1,∴m≥2,故选C. 7.定义集合A、B的运算A*B=x|x∈A,或x∈B,且x∉A∩B,则A*B*A等于 A.A∩BB.A∪B C.AD.B [答案]D [解析]A*B的本质就是集合A与B的并集中除去它们的公共元素后,剩余元素组成的集合. 因此A*B*A是图中阴影部分与A的并集,除去A中阴影部分后剩余部分即B,故选D. [点评]可取特殊集合求解. 如取A=1,2,3,B=1,5,则A*B=2,3,5,A*B*A=1,5=B. 8.广东梅县东山中学2009~2010高一期末定义两种运算:ab=a2-b2,a⊗b=a-b2,则函数fx=为 A.奇函数 B.偶函数 C.奇函数且为偶函数 D.非奇函数且非偶函数 [答案]A [解析]由运算与⊗的定义知, fx=4-x2x-22-2, ∵4-x2≥0,∴-2≤x≤2, ∴fx=4-x22-x-2=-4-x2x, ∴fx的定义域为x|-2≤x<0或0 又f-x=-fx,∴fx为奇函数. 9.08•天津文已知函数fx=x+2,x≤0,-x+2,x>0,则不等式fx≥x2的解集为 A.[-1,1]B.[-2,2] C.[-2,1]D.[-1,2] [答案]A [解析]解法1:当x=2时,fx=0,fx≥x2不成立,排除B、D;当x=-2时,fx=0,也不满足fx≥x2,排除C,故选A. 解法2:不等式化为x≤0x+2≥x2或x>0-x+2≥x2, 解之得,-1≤x≤0或0 10.调查了某校高一一班的50名学生参加课外活动小组的情况,有32人参加了数学兴趣小组,有27人参加了英语兴趣小组,对于既参加数学兴趣小组,又参加英语兴趣小组的人数统计中,下列说法正确的是 A.最多32人B.最多13人 C.最少27人D.最少9人 [答案]D [解析]∵27+32-50=9,故两项兴趣小组都参加的至多有27人,至少有9人. 11.设函数fxx∈R为奇函数,f1=12,fx+2=fx+f2,则f5= A.0B.1 C.52D.5 [答案]C [解析]f1=f-1+2=f-1+f2=12,又f-1=-f1=-12,∴f2=1, ∴f5=f3+f2=f1+2f2=52. 12.已知fx=3-2|x|,gx=x2-2x,Fx=gx,若fx≥gx,fx,若fx A.值为3,最小值-1 B.值为7-27,无最小值 C.值为3,无最小值 D.既无值,又无最小值 [答案]B [解析]作出Fx的图象,如图实线部分,知有值而无最小值,且值不是3,故选B. 第Ⅱ卷非选择题共90分 二、填空题本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上 13.2010•江苏,1设集合A=-1,1,3,B=a+2,a2+4,A∩B=3,则实数a=________. [答案]-1 [解析]∵A∩B=3,∴3∈B, ∵a2+4≥4,∴a+2=3,∴a=-1. 14.已知函数y=fn满足fn=2n=13fn-1n≥2,则f3=________. [答案]18 [解析]由条件知,f1=2,f2=3f1=6,f3=3f2=18. 15.已知函数fx=2-axa≠0在区间[0,1]上是减函数,则实数a的取值范围是________. [答案]0,2] [解析]a<0时,fx在定义域上是增函数,不合题意,∴a>0. 由2-ax≥0得,x≤2a, ∴fx在-∞,2a]上是减函数, 由条件2a≥1,∴0 16.国家规定个人稿费的纳税办法是:不超过800元的不纳税;超过800元而不超过4000元的按超过800元的14%纳税;超过4000元的按全部稿酬的11%纳税.某人出版了一本书,共纳税420元,则这个人的稿费为________. [答案]3800元 [解析]由于4000×11%=440>420,设稿费x元,x<4000,则x-800×14%=420, ∴x=3800元. 三、解答题本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤 17.本题满分12分设集合A=x|a≤x≤a+3,集合B=x|x<-1或x>5,分别就下列条件求实数a的取值范围: 1A∩B≠∅,2A∩B=A. [解析]1因为A∩B≠∅,所以a<-1或a+3>5,即a<-1或a>2. 2因为A∩B=A,所以A⊆B,所以a>5或a+3<-1,即a>5或a<-4. 18.本题满分12分二次函数fx的最小值为1,且f0=f2=3. 1求fx的解析式; 2若fx在区间[2a,a+1]上不单调,求a的取值范围. [解析]1∵fx为二次函数且f0=f2, ∴对称轴为x=1. 又∵fx最小值为1,∴可设fx=ax-12+1a>0 ∵f0=3,∴a=2,∴fx=2x-12+1, 即fx=2x2-4x+3. 2由条件知2a<1 19.本题满分12分图中给出了奇函数fx的局部图象,已知fx的定义域为[-5,5],试补全其图象,并比较f1与f3的大小. [解析]奇函数的图象关于原点对称,可画出其图象如图.显见f3>f1. 20.本题满分12分一块形状为直角三角形的铁皮,直角边长分别为40cm与60cm现将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问怎样剪法,才能使剩下的残料最少? [解析]如图,剪出的矩形为CDEF,设CD=x,CF=y,则AF=40-y. ∵△AFE∽△ACB. ∴AFAC=FEBC即∴40-y40=x60 ∴y=40-23x.剩下的残料面积为: S=12×60×40-x•y=23x2-40x+1200=23x-302+600 ∵0 ∴在边长60cm的直角边CB上截CD=30cm,在边长为40cm的直角边AC上截CF=20cm时,能使所剩残料最少. 21.本题满分12分 1若a<0,讨论函数fx=x+ax,在其定义域上的单调性; 2若a>0,判断并证明fx=x+ax在0,a]上的单调性. [解析]1∵a<0,∴y=ax在-∞,0和0,+∞上都是增函数, 又y=x为增函数,∴fx=x+ax在-∞,0和0,+∞上都是增函数. 2fx=x+ax在0,a]上单调减, 设0 =x1+ax1-x2+ax2=x1-x2+ax2-x1x1x2 =x1-x21-ax1x2>0, ∴fx1>fx2,∴fx在0,a]上单调减. 22.本题满分14分设函数fx=|x-a|,gx=ax. 1当a=2时,解关于x的不等式fx 2记Fx=fx-gx,求函数Fx在0,a]上的最小值a>0. [解析]1|x-2|<2x,则 x≥2,x-2<2x.或x<2,2-x<2x. ∴x≥2或23 2Fx=|x-a|-ax,∵0 ∴Fx=-a+1x+a.∵-a+1<0, ∴函数Fx在0,a]上是单调减函数,∴当x=a时,函数Fx取得最小值为-a2. 【二】 第Ⅰ卷选择题共60分 一、选择题本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。 1.09•宁夏海南理已知集合A=1,3,5,7,9,B=0,3,6,9,12,则A∩∁NB= A.1,5,7B.3,5,7 C.1,3,9D.1,2,3 [答案]A [解析]A∩∁NB=1,3,5,7,9∩1,2,4,5,7,8,10,11,13,14,…=1,5,7. 2.方程log3x+x=3的解所在区间是 A.0,1B.1,2 C.2,3D.3,+∞ [答案]C [解析]令fx=log3x+x-3, ∵f2•f3<0,∴fx的零点在2,3内,∴选C. 3.08•全国Ⅰ1函数y=xx-1+x的定义域为 A.x|x≥0B.x|x≥1 C.x|x≥1∪0D.x|0≤x≤1 [答案]C [解析]要使y=xx-1+x有意义,则xx-1≥0x≥0, ∴x≥1或x≤0x≥0,∴x≥1或x=0, ∴定义域为x|x≥1∪0. 4.09•辽宁文已知函数fx满足:x≥4,fx=12x;当x<4时,fx=fx+1,则f2+log23= A.124B.112 C.18D.38 [答案]A 5.08•江西若0 A.3y<3xB.logx3 C.log4x [答案]C [解析]∵0 ∴①由y=3u为增函数知3x<3y,排除A; ②∵log3u在0,1内单调递增, ∴log3x ③由y=log4u为增函数知log4x ④由y=14u为减函数知14x>14y,排除D. 6.已知方程|x|-ax-1=0仅有一个负根,则a的取值范围是 A.a<1B.a≤1 C.a>1D.a≥1 [答案]D [解析]数形结合判断. 7.已知a>0且a≠1,则两函数fx=ax和gx=loga-1x的图象只可能是 [答案]C [解析]gx=loga-1x=-loga-x, 其图象只能在y轴左侧,排除A、B; 由C、D知,gx为增函数,∴a>1, ∴y=ax为增函数,排除D.∴选C. 8.下列各函数中,哪一个与y=x为同一函数 A.y=x2xB.y=x2 C.y=log33xD.y=2log2x [答案]C [解析]A∶y=xx≠0,定义域不同; B∶y=xx≥0,定义域不同; D∶y=xx>0定义域不同,故选C. 9.上海大学附中2009~2010高一期末下图为两幂函数y=xα和y=xβ的图像,其中α,β∈-12,12,2,3,则不可能的是 [答案]B [解析]图A是y=x2与y=x12;图C是y=x3与y=x-12;图D是y=x2与y=x-12,故选B. 10.2010•天津理,8设函数fx=log2x,x>0,log12-x,x<0.若fa>f-a,则实数a的取值范围是 A.-1,0∪0,1B.-∞,-1∪1,+∞ C.-1,0∪1,+∞D.-∞,-1∪0,1 [答案]C [解析]解法1:由图象变换知函数fx图象如图,且f-x=-fx,即fx为奇函数,∴fa>f-a化为fa>0,∴当x∈-1,0∪1,+∞,fa>f-a,故选C. 解法2:当a>0时,由fa>f-a得,log2a>log12a,∴a>1;当a<0时,由fa>f-a得,log12-a>log2-a,∴-1 11.某市2008年新建住房100万平方米,其中有25万平方米经济适用房,有关部门计划以后每年新建住房面积比上一年增加5%,其中经济适用房每年增加10万平方米.按照此计划,当年建造的经济适用房面积首次超过该年新建住房面积一半的年份是参考数据:1.052=1,1.053=1.16,1.054=1.22,1.055=1.28 A.2010年B.2011年 C.2012年D.2013年 [答案]C [解析]设第x年新建住房面积为fx=1001+5%x,经济适用房面积为gx=25+10x,由2gx>fx得:225+10x>1001+5%x,将已知条件代入验证知x=4,所以在2012年时满足题意. 12.2010•山东理,4设fx为定义在R上的奇函数,当x≥0时,fx=2x+2x+bb为常数,则f-1= A.3B.1 C.-1D.-3 [答案]D [解析]∵fx是奇函数,∴f0=0,即0=20+b,∴b=-1, 故f1=2+2-1=3,∴f-1=-f1=-3. 第Ⅱ卷非选择题共90分 二、填空题本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上 13.化简:lg22+lg2lg5+lg5=________. [答案]1 [解析]lg22+lg2lg5+lg5=lg2lg2+lg5+lg5=lg2+lg5=1. 14.09•重庆理若fx=12x-1+a是奇函数,则a=________. [答案]12 [解析]∵fx为奇函数,∴f-1=-f1, 即12-1-1+a=-12-1-a,∴a=12. 15.已知集合A=x|x2-9x+14=0,B=x|ax+2=0若BA,则实数a的取值集合为________. [答案]0,-1,-27 [解析]A=2,7,当a=0时,B=∅ 满足BA;当a≠0时,B=-2a 由BA知,-2a=2或7,∴a=-1或-27 综上可知a的取值集合为0,-1,-27. 16.已知x23>x35,则x的范围为________. [答案]-∞,0∪1,+∞ [解析]解法1:y=x23和y=x35定义域都是R,y=x23过一、二象限,y=x35过一、三象限, ∴当x∈-∞,0时x23>x35恒成立 x=0时,显然不成立. 当x∈0,+∞时,x23>0,x35>0, ∴=x115>1,∴x>1,即x>1时x23>x35 ∴x的取值范围为-∞,0∪1,+∞. 解法2:x<0时,x23>0>x35成立; x>0时,将x看作指数函数的底数 ∵23>35且x23>x35,∴x>1. ∴x的取值范围是-∞,0∪1,+∞. [点评]变量与常量相互转化思想的应用. 三、解答题本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤 17.本题满分12分用单调性定义证明函数fx=x-2x+1在-1,+∞上是增函数. [解析]证明:设x1>x2>-1,则 fx1-fx2=x1-2x1+1-x2-2x2+1=3x1-x2x1+1x2+1>0 ∴fx1>fx2 ∴fx在-1,+∞上是增函数. 18.本题满分12分已知全集R,集合A=x|x2+px+12=0,B=x|x2-5x+q=0,若∁RA∩B=2,求p+q的值. [解析]∵∁RA∩B=2,∴2∈B, 由B=x|x2-5x+q=0有4-10+q=0,∴q=6, 此时B=x|x2-5x+6=2,3 假设∁RA中有3,则∁RA∩B=2,3与∁RA∩B=2矛盾, ∵3∈R又3∉∁RA, ∴3∈A,由A=x|x2+px+12=0有9+3p+12=0, ∴p=-7.∴p+q=-1. 19.本题满分12分设fx=4x4x+2,若0<a<1,试求: 1fa+f1-a的值; 2f11001+f21001+f31001+…+f10001001的值. [解析]1fa+f1-a=4a4a+2+41-a41-a+2 =4a4a+2+44+2×4a=4a+24a+2=1 ∴f11001+f10001001=f21001+f9991001 =…=f5001001+f5011001=1.∴原式=500. 20.本题满分12分若关于x的方程x2+2ax+2-a=0有两个不相等的实根,求分别满足下列条件的a的取值范围. 1方程两根都小于1; 2方程一根大于2,另一根小于2. [解析]设fx=x2+2ax+2-a 1∵两根都小于1, ∴Δ=4a2-42-a>0-2a<2f1=3+a>0,解得a>1. 2∵方程一根大于2,一根小于2, ∴f2<0∴a<-2. 21.本题满分12分已知函数fx=logaa-axa>1. 1求函数的定义域和值域; 2讨论fx在其定义域内的单调性; 3求证函数的图象关于直线y=x对称. [解析]1解:由a-ax>0得,ax<a,∵a>1, ∴x<1,∴函数的定义域为-∞,1 ∵ax>0且a-ax>0. ∴0<a-ax<a. ∴logaa-ax∈-∞,1,即函数的值域为-∞,1. 2解:u=a-ax在-∞,1上递减, ∴y=logaa-ax在-∞,1上递减. 3证明:令fx=y,则y=logaa-ax, ∴ay=a-ax, ∴ax=a-ay,∴x=logaa-ay, 即反函数为y=logaa-ax, ∴fx=logaa-ax的图象关于直线y=x对称. [点评]1本题给出了条件a>1,若把这个条件改为a>0且a≠1,就应分a>1与0<a<1进行讨论.请自己在0<a<1的条件下再解答12问. 2第3问可在函数fx的图象上任取一点,Px0,y0,证明它关于直线y=x的对称点y0,x0也在函数的图象上. ∵y0=logaa-ax0 ∴ay0=a-ax0即a-ay0=ax0 ∴fy0=logaa-ay0=logaax0=x0 ∴点y0,x0也在函数y=fx的图象上. ∴函数y=fx的图象关于直线y=x对称. 22.本题满分14分已知函数fx=axx2-1的定义域为[-12,12],a≠0 1判断fx的奇偶性. 2讨论fx的单调性. 3求fx的值. [解析]1∵f-x=-axx2-1=-fx,∴fx为奇函数. 2设-12≤x1<x2≤12, fx1-fx2=ax1x21-1-ax2x22-1 =ax2-x1x1x2+1x21-1x22-1 若a>0,则由于x21-1<0,x22-1<0,x2-x1>0, x1x2+1>0. ∴fx1-fx2>0 ∴fx1>fx2即fx在[-12,12]上是减函数 若a<0,同理可得,fx在[-12,12]上是增函数. 3当a>0时,由2知fx的值为 f-12=23a. 当a<0时,由2知fx的值为f12=-23a. 推荐访问:作业本
高一
必修
高一数学必修二作业本答案
高一数学必修二作业本答案
高一数学必修二作业本答案浙教版
高二数学作业本必修二答案
高中数学必修二作业本答案